Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(3): e4011, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583080

RESUMEN

Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.


Asunto(s)
Neoplasias Colorrectales , Flavanonas , Proteína p53 Supresora de Tumor , Humanos , Regulación hacia Abajo , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Proliferación Celular
2.
Microsc Res Tech ; 87(3): 411-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37877737

RESUMEN

This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.


Asunto(s)
Antiinfecciosos , Ocimum basilicum , Aceites Volátiles , Sesquiterpenos Policíclicos , Humanos , Ocimum basilicum/química , Preparaciones de Acción Retardada , Células HEK293 , Microfluídica , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
3.
Pathol Res Pract ; 248: 154728, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37542863

RESUMEN

Cancer is a genetic and complex disorder, resulting from several events associated with onset, development, and metastasis. Tumor suppressors and oncogenes are among the main regulators of tumor progression, contributing to various cancer-related behaviors like cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. Transcription factors (TFs) could act as tumor suppressors or oncogenes in cancer progression. E-twenty-six/E26 (ETS) family of TFs have a winged helix-turn-helix (HLH) motif, which interacted with specific DNA regions with high levels of purines and GGA core. ETS proteins act as transcriptional repressors or activators to modulate the expression of target genes. ETS transcription factor ELK3 (ELK3), as a type of ETS protein, was shown to enhance in various cancers, suggesting that it may have an oncogenic role. These studies indicated that ELK3 promoted invasion, migration, cell cycle, proliferation, and EMT, and suppressed cell apoptosis. In addition, these studies demonstrated that ELK3 could be a promising diagnostic and prognostic biomarker in human cancer. Moreover, accumulating data proved that ELK3 could be a novel chemoresistance mediator in human cancer. Here, we aimed to explore the overall change of ELK3 and its underlying molecular mechanism in human cancers. Moreover, we aimed to investigate the potential role of ELK3 as a prognostic and diagnostic biomarker as well as its capability as a chemoresistance mediator in cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Biomarcadores , Línea Celular Tumoral , Neoplasias/genética , Oncogenes , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/metabolismo
4.
Pathol Res Pract ; 248: 154575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285734

RESUMEN

Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Cicatrización de Heridas/fisiología , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo
5.
Int Immunopharmacol ; 121: 110455, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290324

RESUMEN

The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.


Asunto(s)
Osteogénesis , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Expresión Génica , Diferenciación Celular , Transducción de Señal , Enfermedades Óseas/terapia , Ingeniería de Tejidos , Humanos , Animales
6.
Hum Cell ; 36(5): 1656-1671, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37378889

RESUMEN

Emerging data indicated that long noncoding RNAs (lncRNAs) are crucial players in the biological processes via regulating epigenetics, transcription, and protein translation. A novel lncRNA, LINC00857, was indicated to upregulate in several types of cancer. In addition, LINC00857 was functionally related to the modulation of the cancer-linked behaviors, including invasion, migration, proliferation, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. The importance of LINC00857 in cancer onset and development proposed that LINC00857 has major importance in the cancer progression and may be considered as a novel prognostic/diagnostic biomarker as well as a treatment target. Here, we retrospectively investigate the available progress in biomedical research investigating the functions of LINC00857 in cancer, focusing on finding the molecular mechanisms affecting various cancer-related behaviors and exploring its clinical applications.


Asunto(s)
Carcinogénesis , ARN Largo no Codificante , Humanos , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Estudios Retrospectivos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...